University-Docs/Documents/School/SEM 1/Octave/voorbeeldtoest.m

52 lines
677 B
Matlab

t=(-1:0.1:1)';
A=[ones(size(t)) t t.^2]
b=(20:-1:0)'-t.^3
% Ax = b
% als x1 een kleinste kwadratenopl is dan staat b-Ax1 loodrecht
% op Ax1.
x1 = [10;-10.658;0]
x2 = [-10;8.28;2]
c = (b - A*x1 )'*(A*x1)
d = (b - A*x2)'*(A*x2)
% c is ongeveer nul
%% vraag 2
A = [1 1/2 0
1/2 2 -1/2
0 -1/2 -3]
[V D] = eig(A)
[w, m] = max(diag(D))
argmax = V(:,m)
%% vraag 3
t=-1:4
B=[t;ones(size(t));cos(pi*t);cos(pi/2*t);t.^2]/10
C= zeros(size(B))
for k=1:size(B, 1) % k tot #rijen van B
C(k,:) = 2 * B(k,:)/sqrt(B(k,:)*B(k,:)') % normeren van elke rij maal 2
end
% Zonder for-loop
C = diag(1./sqrt(diag(B*B')))*B
% Vraag 4